- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Buck, Franco (1)
-
Colacion, Gabriel M (1)
-
Drake, Tara E (1)
-
Rukh, Lala (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Low-loss silicon nitride Kerr-microresonators fabricated with metallic etch masks via metal lift-offStoichiometric silicon nitride has emerged as a widely used integrated photonic material owing to its high index of refraction, nonlinear optical properties, and broad transparency window spanning visible to mid-IR frequencies. However, silicon nitride is generally more resistant to reactive ion etching than are typical etch masks made of polymer-based resist. This necessitates resist layers that are significantly thicker than the silicon nitride and results in mask patterns which are tall and narrow. These high-aspect-ratio patterns inhibit the plasma transport of reactive ion etching, which leads to difficulties in accurately reproducing dimensions and creating well-defined, vertical waveguide sidewalls. In this work, we overcome these challenges by developing a metallic etch mask deposited via metal lift-off that provides a 30 : 1 nitride-to-metal etch rate ratio, representing a near 45-fold reduction in the required mask thickness. We demonstrate the validity of this technique by etching microring resonators with near-vertical waveguide sidewalls and intrinsic quality factors of over 1 million. Leveraging the low optical loss of our resonators, we generate optical frequency combs with more than an octave of bandwidth and dual dispersive waves. These results establish metal lift-off as a viable and easy-to-implement technique capable of producing low optical loss waveguides.more » « lessFree, publicly-accessible full text available June 6, 2026
An official website of the United States government
